If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2^2x=4/64
We move all terms to the left:
2^2x-(4/64)=0
We add all the numbers together, and all the variables
2^2x-(+4/64)=0
We get rid of parentheses
2^2x-4/64=0
We multiply all the terms by the denominator
2^2x*64-4=0
Wy multiply elements
128x^2-4=0
a = 128; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·128·(-4)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*128}=\frac{0-32\sqrt{2}}{256} =-\frac{32\sqrt{2}}{256} =-\frac{\sqrt{2}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*128}=\frac{0+32\sqrt{2}}{256} =\frac{32\sqrt{2}}{256} =\frac{\sqrt{2}}{8} $
| 〖12x〗^2-16x-51=0 | | 7x–4=10 | | 7.5/2.5=x/3.5 | | 7=3(4-x) | | 1=2x3= | | r/17=20/17 | | 679.07-x=250 | | (16×x)=200 | | x/2=18.5 | | 7-2n=-31 | | x/2=14.5 | | 2x^2+x=3780 | | Z=6+9i | | -0.1x+0.1(6.5)=0.9 | | 3ײ+5y-1=10 | | 11x-4=4x+15 | | E=9,f=-24 | | 31=1-3z | | 4x/5=5x/6-2 | | 10,205+x=21894 | | 31/2c+31/2c=54 | | -8(w-2)=-2w+10 | | -8(w-2=-2w+10 | | -7=-8w+5(w-2) | | -7=-8w+59(w-2) | | -7/5u=-28 | | 6.7x = 105.86 | | 1-5n=0 | | 10^y×5^2y-2×4^y-1=1 | | 24=x×3x-1 | | 6m-3/7=2m+1/7= | | 2^x^+^1=1024 |